52 research outputs found

    Light Spanners

    Full text link
    A tt-spanner of a weighted undirected graph G=(V,E)G=(V,E), is a subgraph HH such that dH(u,v)≀t⋅dG(u,v)d_H(u,v)\le t\cdot d_G(u,v) for all u,v∈Vu,v\in V. The sparseness of the spanner can be measured by its size (the number of edges) and weight (the sum of all edge weights), both being important measures of the spanner's quality -- in this work we focus on the latter. Specifically, it is shown that for any parameters k≄1k\ge 1 and Ï”>0\epsilon>0, any weighted graph GG on nn vertices admits a (2k−1)⋅(1+Ï”)(2k-1)\cdot(1+\epsilon)-stretch spanner of weight at most w(MST(G))⋅OÏ”(kn1/k/log⁥k)w(MST(G))\cdot O_\epsilon(kn^{1/k}/\log k), where w(MST(G))w(MST(G)) is the weight of a minimum spanning tree of GG. Our result is obtained via a novel analysis of the classic greedy algorithm, and improves previous work by a factor of O(log⁥k)O(\log k).Comment: 10 pages, 1 figure, to appear in ICALP 201

    Improved Algorithms for Decremental Single-Source Reachability on Directed Graphs

    Full text link
    Recently we presented the first algorithm for maintaining the set of nodes reachable from a source node in a directed graph that is modified by edge deletions with o(mn)o(mn) total update time, where mm is the number of edges and nn is the number of nodes in the graph [Henzinger et al. STOC 2014]. The algorithm is a combination of several different algorithms, each for a different mm vs. nn trade-off. For the case of m=Θ(n1.5)m = \Theta(n^{1.5}) the running time is O(n2.47)O(n^{2.47}), just barely below mn=Θ(n2.5)mn = \Theta(n^{2.5}). In this paper we simplify the previous algorithm using new algorithmic ideas and achieve an improved running time of O~(min⁥(m7/6n2/3,m3/4n5/4+o(1),m2/3n4/3+o(1)+m3/7n12/7+o(1)))\tilde O(\min(m^{7/6} n^{2/3}, m^{3/4} n^{5/4 + o(1)}, m^{2/3} n^{4/3+o(1)} + m^{3/7} n^{12/7+o(1)})). This gives, e.g., O(n2.36)O(n^{2.36}) for the notorious case m=Θ(n1.5)m = \Theta(n^{1.5}). We obtain the same upper bounds for the problem of maintaining the strongly connected components of a directed graph undergoing edge deletions. Our algorithms are correct with high probabililty against an oblivious adversary.Comment: This paper was presented at the International Colloquium on Automata, Languages and Programming (ICALP) 2015. A full version combining the findings of this paper and its predecessor [Henzinger et al. STOC 2014] is available at arXiv:1504.0795

    Faster Separators for Shallow Minor-Free Graphs via Dynamic Approximate Distance Oracles

    Full text link
    Plotkin, Rao, and Smith (SODA'97) showed that any graph with mm edges and nn vertices that excludes KhK_h as a depth O(ℓlog⁥n)O(\ell\log n)-minor has a separator of size O(n/ℓ+ℓh2log⁥n)O(n/\ell + \ell h^2\log n) and that such a separator can be found in O(mn/ℓ)O(mn/\ell) time. A time bound of O(m+n2+Ï”/ℓ)O(m + n^{2+\epsilon}/\ell) for any constant Ï”>0\epsilon > 0 was later given (W., FOCS'11) which is an improvement for non-sparse graphs. We give three new algorithms. The first has the same separator size and running time O(\mbox{poly}(h)\ell m^{1+\epsilon}). This is a significant improvement for small hh and ℓ\ell. If ℓ=Ω(nÏ”â€Č)\ell = \Omega(n^{\epsilon'}) for an arbitrarily small chosen constant Ï”â€Č>0\epsilon' > 0, we get a time bound of O(\mbox{poly}(h)\ell n^{1+\epsilon}). The second algorithm achieves the same separator size (with a slightly larger polynomial dependency on hh) and running time O(\mbox{poly}(h)(\sqrt\ell n^{1+\epsilon} + n^{2+\epsilon}/\ell^{3/2})) when ℓ=Ω(nÏ”â€Č)\ell = \Omega(n^{\epsilon'}). Our third algorithm has running time O(\mbox{poly}(h)\sqrt\ell n^{1+\epsilon}) when ℓ=Ω(nÏ”â€Č)\ell = \Omega(n^{\epsilon'}). It finds a separator of size O(n/\ell) + \tilde O(\mbox{poly}(h)\ell\sqrt n) which is no worse than previous bounds when hh is fixed and ℓ=O~(n1/4)\ell = \tilde O(n^{1/4}). A main tool in obtaining our results is a novel application of a decremental approximate distance oracle of Roditty and Zwick.Comment: 16 pages. Full version of the paper that appeared at ICALP'14. Minor fixes regarding the time bounds such that these bounds hold also for non-sparse graph

    Fast Dynamic Graph Algorithms for Parameterized Problems

    Full text link
    Fully dynamic graph is a data structure that (1) supports edge insertions and deletions and (2) answers problem specific queries. The time complexity of (1) and (2) are referred to as the update time and the query time respectively. There are many researches on dynamic graphs whose update time and query time are o(∣G∣)o(|G|), that is, sublinear in the graph size. However, almost all such researches are for problems in P. In this paper, we investigate dynamic graphs for NP-hard problems exploiting the notion of fixed parameter tractability (FPT). We give dynamic graphs for Vertex Cover and Cluster Vertex Deletion parameterized by the solution size kk. These dynamic graphs achieve almost the best possible update time O(poly(k)log⁥n)O(\mathrm{poly}(k)\log n) and the query time O(f(poly(k),k))O(f(\mathrm{poly}(k),k)), where f(n,k)f(n,k) is the time complexity of any static graph algorithm for the problems. We obtain these results by dynamically maintaining an approximate solution which can be used to construct a small problem kernel. Exploiting the dynamic graph for Cluster Vertex Deletion, as a corollary, we obtain a quasilinear-time (polynomial) kernelization algorithm for Cluster Vertex Deletion. Until now, only quadratic time kernelization algorithms are known for this problem. We also give a dynamic graph for Chromatic Number parameterized by the solution size of Cluster Vertex Deletion, and a dynamic graph for bounded-degree Feedback Vertex Set parameterized by the solution size. Assuming the parameter is a constant, each dynamic graph can be updated in O(log⁥n)O(\log n) time and can compute a solution in O(1)O(1) time. These results are obtained by another approach.Comment: SWAT 2014 to appea

    Sparse Fault-Tolerant BFS Trees

    Full text link
    This paper addresses the problem of designing a sparse {\em fault-tolerant} BFS tree, or {\em FT-BFS tree} for short, namely, a sparse subgraph TT of the given network GG such that subsequent to the failure of a single edge or vertex, the surviving part Tâ€ČT' of TT still contains a BFS spanning tree for (the surviving part of) GG. Our main results are as follows. We present an algorithm that for every nn-vertex graph GG and source node ss constructs a (single edge failure) FT-BFS tree rooted at ss with O(n \cdot \min\{\Depth(s), \sqrt{n}\}) edges, where \Depth(s) is the depth of the BFS tree rooted at ss. This result is complemented by a matching lower bound, showing that there exist nn-vertex graphs with a source node ss for which any edge (or vertex) FT-BFS tree rooted at ss has Ω(n3/2)\Omega(n^{3/2}) edges. We then consider {\em fault-tolerant multi-source BFS trees}, or {\em FT-MBFS trees} for short, aiming to provide (following a failure) a BFS tree rooted at each source s∈Ss\in S for some subset of sources S⊆VS\subseteq V. Again, tight bounds are provided, showing that there exists a poly-time algorithm that for every nn-vertex graph and source set S⊆VS \subseteq V of size σ\sigma constructs a (single failure) FT-MBFS tree T∗(S)T^*(S) from each source si∈Ss_i \in S, with O(σ⋅n3/2)O(\sqrt{\sigma} \cdot n^{3/2}) edges, and on the other hand there exist nn-vertex graphs with source sets S⊆VS \subseteq V of cardinality σ\sigma, on which any FT-MBFS tree from SS has Ω(σ⋅n3/2)\Omega(\sqrt{\sigma}\cdot n^{3/2}) edges. Finally, we propose an O(log⁥n)O(\log n) approximation algorithm for constructing FT-BFS and FT-MBFS structures. The latter is complemented by a hardness result stating that there exists no Ω(log⁥n)\Omega(\log n) approximation algorithm for these problems under standard complexity assumptions

    Fully-dynamic Approximation of Betweenness Centrality

    Full text link
    Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Since an exact computation is prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in evolving networks. In previous work we proposed the first semi-dynamic algorithms that recompute an approximation of betweenness in connected graphs after batches of edge insertions. In this paper we propose the first fully-dynamic approximation algorithms (for weighted and unweighted undirected graphs that need not to be connected) with a provable guarantee on the maximum approximation error. The transfer to fully-dynamic and disconnected graphs implies additional algorithmic problems that could be of independent interest. In particular, we propose a new upper bound on the vertex diameter for weighted undirected graphs. For both weighted and unweighted graphs, we also propose the first fully-dynamic algorithms that keep track of such upper bound. In addition, we extend our former algorithm for semi-dynamic BFS to batches of both edge insertions and deletions. Using approximation, our algorithms are the first to make in-memory computation of betweenness in fully-dynamic networks with millions of edges feasible. Our experiments show that they can achieve substantial speedups compared to recomputation, up to several orders of magnitude

    Path-Fault-Tolerant Approximate Shortest-Path Trees

    Full text link
    Let G=(V,E)G=(V,E) be an nn-nodes non-negatively real-weighted undirected graph. In this paper we show how to enrich a {\em single-source shortest-path tree} (SPT) of GG with a \emph{sparse} set of \emph{auxiliary} edges selected from EE, in order to create a structure which tolerates effectively a \emph{path failure} in the SPT. This consists of a simultaneous fault of a set FF of at most ff adjacent edges along a shortest path emanating from the source, and it is recognized as one of the most frequent disruption in an SPT. We show that, for any integer parameter k≄1k \geq 1, it is possible to provide a very sparse (i.e., of size O(kn⋅f1+1/k)O(kn\cdot f^{1+1/k})) auxiliary structure that carefully approximates (i.e., within a stretch factor of (2k−1)(2∣F∣+1)(2k-1)(2|F|+1)) the true shortest paths from the source during the lifetime of the failure. Moreover, we show that our construction can be further refined to get a stretch factor of 33 and a size of O(nlog⁥n)O(n \log n) for the special case f=2f=2, and that it can be converted into a very efficient \emph{approximate-distance sensitivity oracle}, that allows to quickly (even in optimal time, if k=1k=1) reconstruct the shortest paths (w.r.t. our structure) from the source after a path failure, thus permitting to perform promptly the needed rerouting operations. Our structure compares favorably with previous known solutions, as we discuss in the paper, and moreover it is also very effective in practice, as we assess through a large set of experiments.Comment: 21 pages, 3 figures, SIROCCO 201

    Spanning Properties of Theta-Theta Graphs

    Full text link
    We study the spanning properties of Theta-Theta graphs. Similar in spirit with the Yao-Yao graphs, Theta-Theta graphs partition the space around each vertex into a set of k cones, for some fixed integer k > 1, and select at most one edge per cone. The difference is in the way edges are selected. Yao-Yao graphs select an edge of minimum length, whereas Theta-Theta graphs select an edge of minimum orthogonal projection onto the cone bisector. It has been established that the Yao-Yao graphs with parameter k = 6k' have spanning ratio 11.67, for k' >= 6. In this paper we establish a first spanning ratio of 7.827.82 for Theta-Theta graphs, for the same values of kk. We also extend the class of Theta-Theta spanners with parameter 6k', and establish a spanning ratio of 16.7616.76 for k' >= 5. We surmise that these stronger results are mainly due to a tighter analysis in this paper, rather than Theta-Theta being superior to Yao-Yao as a spanner. We also show that the spanning ratio of Theta-Theta graphs decreases to 4.64 as k' increases to 8. These are the first results on the spanning properties of Theta-Theta graphs.Comment: 20 pages, 6 figures, 3 table

    Routing in Histograms

    Get PDF
    Let PP be an xx-monotone orthogonal polygon with nn vertices. We call PP a simple histogram if its upper boundary is a single edge; and a double histogram if it has a horizontal chord from the left boundary to the right boundary. Two points pp and qq in PP are co-visible if and only if the (axis-parallel) rectangle spanned by pp and qq completely lies in PP. In the rr-visibility graph G(P)G(P) of PP, we connect two vertices of PP with an edge if and only if they are co-visible. We consider routing with preprocessing in G(P)G(P). We may preprocess PP to obtain a label and a routing table for each vertex of PP. Then, we must be able to route a packet between any two vertices ss and tt of PP, where each step may use only the label of the target node tt, the routing table and neighborhood of the current node, and the packet header. We present a routing scheme for double histograms that sends any data packet along a path whose length is at most twice the (unweighted) shortest path distance between the endpoints. In our scheme, the labels, routing tables, and headers need O(log⁥n)O(\log n) bits. For the case of simple histograms, we obtain a routing scheme with optimal routing paths, O(log⁥n)O(\log n)-bit labels, one-bit routing tables, and no headers.Comment: 18 pages, 11 figure
    • 

    corecore